Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

º¹ÇÕ·¹Áø ¼öº¹¹°ÀÌ ½û±âÇü ºñ¿ì½Ä¼º Ä¡°æºÎ º´¼ÒÀÇ ÀÀ·Â ºÐÆ÷¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ °üÇÑ 3Â÷¿ø À¯ÇÑ¿ä¼Ò¹ýÀû ¿¬±¸

The influence of composite resin restoration on the stress distribution of notch shaped noncarious cervical lesion A three dimensional finite element analysis study

´ëÇÑÄ¡°úº¸Á¸ÇÐȸÁö 2007³â 32±Ç 1È£ p.69 ~ 79
ÀÌä°æ, ¹ÚÁ¤±æ, ±èÇöö, ¿ì¼º°ü, ±è±¤ÈÆ, ¼Õ±Ç, Ç㺹,
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÌä°æ ( Lee Chae-Kyung ) - ºÎ»ê´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç
¹ÚÁ¤±æ ( Park Jeong-Kil ) - ºÎ»ê´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç
±èÇöö ( Kim Hyeon-Cheol ) - ºÎ»ê´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç
¿ì¼º°ü ( Woo Sung-Gwan ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
±è±¤ÈÆ ( Kim Kwang-Hoon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
¼Õ±Ç ( Son Kwon ) - ºÎ»ê´ëÇб³ °ø°ú´ëÇÐ ±â°è¼³°è°øÇаú
Ç㺹 ( Hur Bock ) - ºÎ»ê´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Á¸Çб³½Ç

Abstract

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ½û±âÇü ºñ¿ì½Ä¼º 5µî±Þ¿Íµ¿À» º¹ÇÕ·¹ÁøÀ¸·Î ¼öº¹Çϱâ Àü, ÈÄ¿¡ °úµµÇÑ ±³Çշ¿¡ ÀÇÇÑ ÀÀ·ÂºÐÆ÷ º¯È­¸¦ ºñ±³ ¿¬±¸Çϱâ À§ÇÔÀ̾ú´Ù. ¹ßÄ¡µÈ »ó¾Ç Á¦ 2¼Ò±¸Ä¡¸¦ ÀÌ¿ëÇÏ¿© ½û±âÇü ºñ¿ì½Ä¼º Ä¡°æºÎº´¼Ò¸¦ °¡Áø 3Â÷¿ø À¯ÇÑ¿ä¼Ò¸ðÇüÀ» Á¦ÀÛÇÑ ÈÄ Åº¼º°è¼ö°¡ ¼­·Î ´Ù¸¥ È¥ÇÕÇü º¹ÇÕ·¹Áø°ú È帧¼º º¹ÇÕ·¹ÁøÀ¸·Î °¢°¢ ÃæÀüÇÏ°í À̶§ÀÇ »ó¾ÆÁú Á¢ÂøÁ¦ÀÇ µÎ²²´Â 40mum·Î ÇÏ¿´´Ù. ÇùÃø±³µÎ¿Í ¼³Ãø±³µÎ¿¡ 500 NÀÇ ÇÏÁßÀ» °¢°¢ °¡ÇÑ ÈÄ ANSYS ÇÁ·Î±×·¥À» ÀÌ¿ëÇÏ¿© ÁÖÀÀ·ÂºÐ¼®¹ýÀ¸·Î º´¼ÒÀÇ ½ÉºÎ¿Í ¿Íµ¿ ¼öÁ÷º´ÀÇ ÀÀ·ÂºÐÆ÷¸¦ ºñ±³ÇÏ¿© ´ÙÀ½°ú °°Àº °á°ú¸¦ ¾ò?B´Ù. 1. ÇùÃø±³µÎ¿¡ ÇÏÁßÀÌ °¡ÇØÁö¸é º´¼Ò¿¡ ¾ÐÃàÀÀ·ÂÀÌ ³ªÅ¸³ª°í, ¼³Ãø±³µÎ¿¡ °¡ÇØÁö¸é ÀÎÀåÀÀ·ÂÀÌ ³ªÅ¸³­´Ù. µÎ °¡Áö ÇÏÁß¿¡¼­ ¸ðµÎ º´¼ÒÀÇ ±Ù½É ³¡ ºÎÀ§¿Í ÀÎÁ¢ÇÑ ¹é¾Ç¹ý¶û°æ°è ±×¸®°í º´¼ÒÀÇ ½ÉºÎ¿¡ ÀÀ·ÂÀÌ ÁýÁߵǾú´Ù. 2. ÀÀ·ÂÀÇ ÁýÁßÀ» º¸¿´´ø º´¼ÒÀÇ ±Ý½ÉºÎ±Ù°ú ½ÉºÎ´Â ¼öº¹ ÈÄ ÀÀ·ÂÀÌ ¸¹ÀÌ °¨¼ÒÇÏ¿´À¸¸ç ´ë½Å ´Ù¸¥ ºÎÀ§¿¡¼­´Â ÀÀ·ÂÀÌ ¾à°£ Áõ°¡ÇÏ¿´´Ù. 3. º´¼ÒÀÇ ±Ù½ÉºÎÀ§¿Í ½ÉºÎ´Â È帧Çü º¹ÇÕ·¹ÁøÀ¸·Î ¼öº¹ÇÏ¿´À» ¶§ º¸´Ù È¥ÇÕÇü º¹ÇÕ·¹ÁøÀ¸·Î ¼öº¹ÇÏ¿´À» ¶§ ÀÀ·ÂÀÌ ´õ ¸¹ÀÌ °¨¼ÒÇÏ¿´´Ù.

The purpose of this study was to investigate the effects of composite resin restorations on the stress distribution of notch shaped noncarious cervical lesion using three-dimensional (3D) finite element analysis (FEA). Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072 ; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). ANSYS (Swanson Analysis Systems, Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid or flowable resin and each restoration was simulated with adhesive layer thickness (40mum). A static load of 500 N was applied on a point load condition at buccal cusp (loading A) and palatal cusp (loading B). The principal stresses in the lesion apex (internal line angle of cavity) and middle vertical wall were analyzed using ANSYS. The results were as follows 1. Under loading A, compressive stress is created in the unrestored and restored cavity. Under loading B, tensile stress is created. And the peak stress concentration is seen at near mesial corner of the cavity under each load condition. 2. Compared to the unrestored cavity, the principal stresses at the cemeto-enamel junction (CEJ) and internal line angle of the cavity were more reduced in the restored cavity on both load con ditions. 3. In teeth restored with hybrid composite, the principal stresses at the CEJ and internal line angle of the cavity were more reduced than flowable resin.

Å°¿öµå

½û±âÇü ¿Íµ¿;5±Þ¿Íµ¿¼öº¹;ÀÀ·ÂºÐÆ÷;À¯ÇÑ¿ä¼ÒºÐ¼®;È¥ÇÕÇüº¹ÇÕ·¹Áø;È帧Çü º¹ÇÕ·¹Áø
Notch shaped cavity;Class 5 restoration;Stress distribution;Finite element analysis;Hybrid composite resin;Flowable composite resin

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI